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AD is a common chronic progressive neurodegenerative disorder. However, the understanding of the dynamic longitudinal change
of the brain in the progression of AD is still rough and sometimes conflicting. This paper analyzed the brain networks of healthy
people and patients at different stages (EMCI, LMCI, and AD). The results showed that in global network properties, most
differences only existed between healthy people and patients, and few were discovered between patients at different stages.
However, nearly all subnetwork properties showed significant differences between patients at different stages. Moreover, the
most interesting result was that we found two different functional evolving patterns of cortical networks in progression of AD,
named ‘temperature inversion’ and “monotonous decline,” but not the same monotonous decline trend as the external
functional assessment observed in the course of disease progression. We suppose that those subnetworks, showing the same
functional evolving pattern in AD progression, may have something the same in work mechanism in nature. And the
subnetworks with ‘temperature inversion’ evolving pattern may play a special role in the development of AD.

1. Introduction

The pathogenesis of Alzheimer’s disease (AD) is concealed
and affects both the brain structure and function connections
[1]. It can be divided into three main phases: preclinical, mild
cognitive impairment (MCI) which can be further divided
into the early stage of MCI (EMCI) and the later stage of
MCI (LMCI), and dementia [2]. It is reported that about
10–15% individuals with MCI tend to progress to AD per
year [3]. Although some studies claimed that acetylcholines-
terase inhibitors may lower the rate of this progression, [4, 5]
some did not support this conclusion [6, 7]. The disagree-

ment prompted us to further study how the brain changes
during the different stages of the disease.

Resting-state brain subnetworks showed the pathological
features of AD especially DMN [8, 9], and the subnetworks
reflected interactions with each other such as competitive
relationship [10], regulatory role, [11] or transition player
[12]. Therefore, it is crucial that we should not only notice
the changes in the whole brain but also focus on the alter-
ations in each subnetwork and the intra- or internetwork
connection to discover the pathogenesis of AD. Using the
graph theory method, there were some differences between
normal controls and patients, such as a lower value of the
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small-word attribute and clustering coefficient in AD [13],
significant decrease of clustering coefficient, and local
efficiency in the limbic network of MCI [14]. Due to the sam-
ples’ heterogeneity of the different methods, the results are
inconsistent and even contradictory. Furthermore, the change
patterns of each network properties in the process of EMCI to
LMCI and AD and how the inter- and intrasubnetworks are
altered are still unknown.

Based on resting-state functional magnetic resonance
imaging (fMRI), we used the graph theory method to explore
the dynamical change patterns of brain functional network
reorganization during the development of AD. We sought
to determine the significant brain functional connectivity
features to discover the progression pathogenesis and reveal
the difference of global network attributes by studying the
changes of internal attributes of each resting-state network.

2. Subjects and Methods

2.1. Information of Subjects. The data used in this study were
obtained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset (http://adni.loni.usc.edu/).The primary
goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see
http://www.adni-info.org. Twenty-five patients with AD
(age: 75:17 ± 4:08), thirty-three patients with LMCI (age:
74:03 ± 4:65), thirty-seven patients with EMCI (age: 72:96 ±
4:55), and thirty-five age-matched NCs (age: 73:80 ± 5:06)
were recruited. The age of subjects in this study ranged from
60 to 90. The demographic information of subjects is shown
in Table 1.

2.2. Preprocess of Data. The functional MRI images were
acquired on 3.0T Philips scanner. One hundred and forty
function volumes were obtained with the parameters
(TR/TE = 3000/30, FA = 80°, slice thickness = 3:3mm, matrix
= 64 × 64, and number of slices = 48). To insure magnetiza-
tion equilibrium, the first ten images of each subject were
discarded.

We used Statistical Parametric Mapping (SPM8, https://
www.fil.ion.ucl.ac.uk/spm) and Data Processing Assistant
for Resting-State fMRI (DPARSF) toolbox to preprocess
next. After slice timing and realigning time series, subjects
whose head translation exceeded 2mm or head rotation
exceeded 2° were excluded. All images were normalized to
the Montreal Neurological Institute (MNI) template for con-
sistency. Then, we smoothed the images with a standard 4
× 4 × 4 FWHM kernel and used a bandpass frequency with
the range from 0.01Hz to 0.08Hz to filter the time courses.
Subsequently, to reduce the effects of motion and nonneuro-
nal BOLD fluctuations, the global mean signal, white matter
signal, and cerebrospinal fluid signal the covariates which
consist of six head motion parameters were removed. Finally,
the time series of 90 interest (ROI) based on the anatomical

automatic labeled brain (AAL; http://www.cyceron.fr/
freeware/) were extracted for each subject.

2.3. Construction of Brain Functional Network. The construc-
tion of the brain network was performed using MATLAB
2016a and the brain connectivity toolbox (BCT; https://
www.nitrc.org/projects/bct).We used Pearson’s correlation
coefficient to obtain the correlation matrix. Each correlation
matrix was further divided into the binary matrix with a fixed
sparsity value S, which was defined as the ratio of the sum of
existing edges divided by the most possible number of edges
in a network. In order to study the network attribute perfor-
mance, we applied a wide range of sparsity thresholds instead
of selecting a single one. We selected the scope of S according
to the following criterions: (1) the average degree was no less
than 2 × log ðNÞ and (2) the small worldness of the normal
control group was no less than 1.1 [15]. These criterions min-
imized the possible number of fake edges in each network.
Eventually, we confirmed S with a threshold (0.08, 0.52),
and step was 0.01.

In order to characterize the attributes of the brain func-
tional networks, we employed five parameters: the clustering
coefficient, efficiency, transitivity, characteristic path length,
and small worldness, shown in Table 2. The interpretations
and detailed uses can be seen in a previous study [16]. More-
over, we calculated the area under the curve (AUC) over a
range of density instead of selecting a single sparsity thresh-
old for each binary network, which offered a summarized
scalar for the network topological attributes and avoided
the influence of selecting a single threshold [17, 18]. The
method has been widely used in many studies [19–21].

Correspondingly, we divided 90 regions into five RSN
which included the default mode network (DMN), attention
network (ATT), subcortical network (SUB), auditory
network (AUD), visual network (VIS), and sensorimotor
network (SEN) [22, 23]. We also calculated the global
attributes of the RSNs whose connectivity matrix was the
functional connectivity of paired regions belonging to the
RSNs Rn = frjrnij = corrðri, r jÞ, n = 1⋯⋯5, i, j ∈ ng, and
binary networks also consisted of the regions belonging to
the RSNs Bn = bnij, n = 1⋯ 5 [24, 25]. Then, the properties of
RSN were calculated and the independent two-sample t-test
was also used. Afterwards, we calculated the graph theory
measurement of the RSNs and the AUC, respectively.
For internetwork, the connectivity matrix was composed
of functional connectivity of paired regions in any two of
the RSNs Cnm =meanðCnmÞ, Cnm = frjrnmij = corrðri, r jÞ, n
= 1⋯ 5, i ∈ n, j ∈mg [24, 25]. And the two independent
sample t-test was also used for the FC of the internetwork.
The correlation analysis between the properties (both
global and local) and MMSE were performed.

2.4. Statistical Analysis. To estimate whether there were
significant group differences between the metrics, we used a
nonparametric permutation test with 10,000 repetitions on
the AUC of each network metric [26] between the normal
controls and the EMCI/LMCI/AD patients, respectively.
After calculating the difference between groups for each
network attribute, we randomly reallocated all the values into
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two groups in order to obtain the empirical distribution of
the difference. Then, we used 95 percent of the distribution
as confidence in a one-tailed test to find out whether differ-
ences between the observed groups could occur casually
[19, 27]. In addition, we used a Benjamini Hochberg false
discovery rate (FDR) correction method with a significance
level of 0.05 to solve the problem of multiple comparisons.
For the properties of intra and interfunctional connectivity
of RSN, two independent sample t-test was used as we
mentioned before.

3. Result

3.1. Global Attributes. Based on the functional connectivity
adjacency matrix, we calculated the clustering coefficient,
characteristic path length, transitivity, efficiency, and small
world attribute. We performed a post hoc two-sample t-test
on any two groups of NC, EMCI, LMCI, and AD. In the
results, only the NC group showed a significant difference,
respectively, with the EMCI, LMCI, and AD groups on the
clustering coefficient, characteristic path length, transfer coef-
ficient, and the small world attribute. Other group combina-
tions showed no difference on any global network
properties. Figure 1 showed the p value (FDR correction) of
the t-test of those four brain network attributes showing a sig-
nificant difference between the NC group and other three
groups (EMCI, LMCI, and AD), respectively. The NC group
showed significant differences with EMCI on the clustering
coefficient, transitivity, and small world attribute at most of
various brain network densities. Compared with LMCI, the
NC group has a significant difference at most brain network
densities on the characteristic path length, clustering coeffi-
cient, transitivity, and small world attribute. In the NC group
vs. the AD group, there also are differences on the characteris-

tic path length, clustering coefficient, transfer coefficient, and
small world attribute.

Since there is no unified opinion on the demarcation of
brain network density, we used the global attribute AUC to
remove the effect of density selection on network attributes
analysis, as well as the characteristic path length, clustering
coefficients, efficiency, transitivity, and small world attribute.
We found that on the characteristic path length, transitivity,
and clustering coefficient, only the NC group showed signif-
icant differences compared with the EMCI, LMCI, and AD
groups. In efficiency, only the NC group compared with
LMCI and AD was different, while groups from other stages
have no difference with each other. In the small world attri-
bute, all group combinations showed significant differences
except EMCI vs. AD. It can be found that in the progression
from NC to AD via EMCI and LMCI, the small world attri-
bute showed a U-shaped change curve. There was no differ-
ence in other attributes except the small world attribute in
EMCI vs. LMCI, which may be because the difference of these
attributes between the two groups was to reach a significant
level. For EMCI vs. LMCI and LMCI vs. AD, only the small-
world attribute was significantly different and there was no
difference on other attributes. As can be seen in Figure 2, in
addition to the small world attribute and clustering coefficient
which showed U-shaped changes in the disease progression,
the other three attributes matched continuous monotonous
decreasing trend.

3.2. Functional Connectivity.Post hoc two-sample t-test (FDR
corrected, 1000 permutation) was performed on the same
region connection of the brain network between any two
groups of NC, EMCI, LMCI, and AD. Eventually, we could
gain pairs of brain regions with significant differences in func-
tional connectivity between groups. As we can see in Figure 3,
seven functional links showed significant differences between

Table 1: Demographic characteristics of the studied cohort.

NC EMCI LMCI AD

Number 35 37 33 25

Gender (M/F) 14/21 16/21 19/14 14/11

Age (year) 73:80 ± 5:06 72:96 ± 4:55 74:03 ± 4:65 75:17 ± 4:08

MMSE 28:89 ± 1:21 28:08 ± 1:74 27:85 ± 1:64 22:72 ± 2:41

Table 2: Introduction of graph theory properties∗.

Name Abbreviation Expression

Characteristic path length Char Char = 2/N N − 1ð Þ〠
i>jdisi,j

Efficiency Effi Effi = 1/N N − 1ð Þ〠
i≠j

1/disi,j
� �

Clustering coefficient Clus
Clus = 1/N∑Ci

Ci = ti/ki ki − 1ð Þ/2
Transitivity Tran Tran =〠

i
2ti/〠i

ki ki − 1ð Þ
Small worldness SW SW = C/C0/L/L0
whereN is the total number of nodes in the network, disi,j is the minimum number of hops from nodes numbered as i to nodes numbered as j, k is the degree of
nodes numbered as i, that is, the number of neighbors, while ti is the number of edges between neighbors of nodes numbered as i. L0 and C0 are the length of the
characteristic path and clustering coefficient of random network under the same network size and density, respectively.
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the NC group and EMCI group, including IOG. L and
ORBsup. L, ORBmid. R, ORBsupmed. R, TPOmid. R and
PCG. L, PCG. R, OLF. L and INS. L, and PAL. L and STG.R.
Among these links, TPOmid. R, PCG. L, and PCG. R belong
to the DMN network, and other link brain regions belong to
different subnetworks. There were significant differences
between EMCI and LMCI in only two edges of the brain
network, MOG. L and ITG. L, ORBsupmed. R and ACG.R.

For the LMCI group and AD group, seven links of brain
regions were found to be significantly different, IOG. L and
ORBinf. L, ANG. L, PAL. L and STG. R, ANG. L and ITG. L,
ROL. L and MOG. R, ANG. L and PAL. R, and MOG. R and
STG.L. For these links, brain region pairs all belonged to
different subnetworks apart. Further, we performed a Pearson
correlation analysis on the weights of these edges with signif-
icant differences and the MMSE scores of the corresponding
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Figure 1: p values of each property in different stages.
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groups, respectively, and found that the link weight between
the MOG. L and ITG. L had a significant correlation with
MMSE scores (r = −0:43, p = 0:008) in the EMCI group, so
did the link weight between the ANG. L and SOG. R
(r = 0:41, p = 0:012). It was also observed that the link weight
between IOG. R and ANG. R was significantly associated with
AD group’s MMSE scores (r = 0:41, p = 0:043).

We did a t-test on the connections of intrasubnetworks
between any two groups of NC, EMCI, LMCI, and AD. As
a result, comparing NC with the EMCI group, there was a
significant difference only on the link weight of the attention
network vs. the auditory network and the default mode net-
work vs. the subcortical network. Comparing the NC group
with the AD group, differences were found only on the link

weight of the attention network vs. the default mode network
and the auditory network vs. the sensorimotor network. As
we can see in Figure 4, differences only appeared in the com-
parison of the NC group with the initial disease stage, EMCI,
and the final disease stage, AD.

In addition, there is no significant difference on link
weights of the intrasubnetworks between groups. Afterwards,
we employed graph theory to explore the topological proper-
ties of each subnetwork intending to explore some more
differences between groups.

3.3. Subnetworks. For each subnetwork, we also calculated
the AUC of the characteristic path length, small world prop-
erty, clustering coefficient, global efficiency, and transitivity
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Figure 2: AUC of each property in different stages.
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Figure 3: Functional connectivity with significant differences in stages. (a) NC compared with EMCI. (b) EMCI compared with LMCI. (c)
LMCI compared with AD. (d) NC compared with AD. (e) EMCI compared with AD.
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as we performed a global brain network analysis. At the same
time, we also performed two-sample t-test on properties of
AUC between groups. We find out that the six subnetworks
all have differences in the characteristic path length, cluster-
ing coefficient, small-world attribute, global efficiency, and
transitivity between any two groups, see Figure 5.

In addition, we found that the changing trends of proper-
ties of these subnetworks showed two distinct patterns as the
disease progress from NC to AD, via EMCI and LMCI.

The properties of the four subnetworks, auditory network,
default mode network, visual network, and subcortical net-
work appeared first in an increasing and then decreasing pat-
tern, which is an inverted U-shaped curve as the disease
progressed to AD. In the NC-EMCI process, the properties
rose and peaked in EMCI.While in the EMCI-LMCI-ADpro-
cess, all the properties declined, down to theminimum in AD.

On the other hand, the properties of the sensorimotor
network and attention network all showed a continuous
decline, which we called a “monotonous decline,” in line with
our common understanding of this disease, that is, as the dis-
ease gets worse, brain areas continue to be attacked, and
brain function declines in a monotonous decreasing pattern.

3.4. Mini-Mental State Examination Score (MMSE). MMSE
scores of the NC, EMCI, LMCI, and AD group were not
related to any of the global attributes (clustering coefficient,
small world property, characteristic path length, transitivity,
and efficiency) except the characteristic path length in the
stage of EMCI and AD (r = 0:26, p = 0:04). However, in the
subnetwork analysis, the MMSE scores were observed to be
related to the properties of the DMN in the LMCI stage.

4. Discussion

In this study, we used graph theory based on resting-state
fMRI data to investigate the alteration of network attributes
for the whole brain and each subnetwork following the pro-
gresses of AD. Little difference was found in global network
attributes between different stages in the progressing process
of AD.While in the subnetwork analysis, we found that all five

attributes of each subnetwork (the intra- and intersubnetwork
functional connectivity) for each progressing stage of AD
(EMCI, LMCI, andAD) changed to various degrees, andmost
of these changes reached statistical significance, especially in
DMN and visual network. However, the most interesting
and important thingwe discovered in this studywas that there
exist two types of distinct change patterns in the functional
brain subnetwork during disease progression in AD.

AD is a progressive disease that spread through axonal
pathways to other brain areas during disease progression. It
is reported that this propagation is constrained by the under-
lying white matter brain structural connectome, which may
reflect the potential mechanism on how brain network topol-
ogy shapes neural response to early damage in AD [28]. Our
results also support this hypothesis to some extent that we
found compared to NC participants; EMCI, LMCI, and AD
patients all showed a significant difference in the characteris-
tic path length, clustering coefficient, transitivity, and small
worldness, indicating a dynamic reorganization of the brain
functional network in the progression of AD.

Thereinto, the small world attribute showed a signifi-
cant difference between groups of different progressing
stages of AD, implying that the information transmission
efficiency of the brain network was changed significantly
throughout the proceeding of this disease. Meanwhile, an
interesting phenomenon is that the small world attribute
showed a U-shaped change during the disease progression,
but not a monotonous decline. Although small world prop-
erty is thought to be the optimal topological structure of the
brain, the most serious change of this property is not in the
final AD stage. We speculate that it is because of the con-
tinuous interaction between the progressive disease damage
and the underlying brain compensatory mechanisms, which
results in the ultimate U-shaped manifestation of the small
world parameter.

Except the small world attribute, we did not observe any
significant difference on other properties between any two
groups of disease stages, including EMCI, LMCI, and AD.
Only on the stages of EMCI and AD do the characteristic
path length of all global topological attributes showed
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Figure 4: Significant difference of function connectivity in the intersubnetwork. (a) NC compared with EMCI. (b) NC compared with AD.
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significant correlation with MMSE (r = 0:26, p = 0:04) in
patients, which indicated their potential application in cap-
turing the progress of AD on the one hand, and that the
global metrics for the whole-brain network could only reflect
part of the topological alterations on the other hand. This
also prompted us to subsequently study on the alterations
and interactions of subnetworks.

Base on the previous brain network analysis, we investi-
gated the topological attributes and the interactions of subnet-
works. The properties of each subnetwork were significantly
altered during the progression from NC to EMCI, LMCI,

and AD. Themost interesting result was the changing pattern
of the subnetworks. The changing patterns of five properties
of auditory network, DMN, visual network, and subcortical
network all showed an inverted U-shaped curve, which was
an ‘inversion’ changing pattern from the perspective of
disease progression, but not a monotonous decreasing trend
in function as we typically supposed. We call this inverted
U-shaped change pattern as “temperature inversion phenom-
enon,” which was derived from meteorological concepts that
an inversion is a deviation from the normal change pattern
of an atmospheric property with altitude [29]. In the near-
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Figure 5: The value of AUC in subnetwork properties. (a) Auditory network. (b) Default mode network. (c) Visual network. (d) Subcortical
network. (e) Sensorimotor network. (f) Attention network. ∗ represented that there existed a significant difference.

8 Neural Plasticity



surface atmosphere, air temperature increases with height,
but does not follow the common rule that air temperature
decreases with an increasing altitude. Meanwhile, the peak
values of the inverted U-shaped changing curves all located
in the same disease progressing stage, EMCI. However, the
change patterns of other two subnetworks, the sensorimotor
network, and attention network linearly declined with the
progression fromNC toAD, which we called as “monotonous
decline” to represent the monotonous decreasing pattern.We
speculate that theremay be two different types of subnetworks
in the brain that reflect different pathophysiological mecha-
nisms in the progression of AD disease. When the properties
of subnetworks change as the disease progresses in a same
pattern, we call these subnetworks as “homogeneous evolving
subnetworks”, otherwise, we call them “heterogeneous evolv-
ing subnetworks.” We suppose that the functional mecha-
nisms of homogeneous evolving subnetworks may have
something the same in nature. The specific physiological sig-
nificance involving homogeneous or heterogeneous evolving
subnetworks needs to be further studied in the future.

We suppose that the interactions of these two different
types of change patterns of subnetworks finally result in the
topological performance of the whole-brain network. Some
researchers reported the steady pattern of anticorrelations
between the DMN and the task positive network [30–32].
Some studies also reported the negative correlation pattern
association to brain development and aging [33, 34]. How-
ever, the distinct change patterns with disease progression
has never been reported to the best of our knowledge.

Combining our results, we speculated that during the
EMCI stages, the brain damage was already widely located
in the brain areas, which affected the information transmis-
sion ability of the whole-brain network. To minimize the
influence, the robustness of the brain triggers the synergy
and antagonism among subnetworks for function compensa-
tion. When it was in the AD stage, the brain was seriously
damaged due to the progression of the disease, which
ultimately led the brain network topology to shift to random-
ization [13, 35]. So the change patterns of the small-
worldness metric of the DMN and corresponding homoge-
neous evolving subnetworks have an ‘inversion’ style with
that of the whole-brain network. Meanwhile, the characteris-
tic path length and the small worldness of the DMN were
significantly negatively correlated with the MMSE scores in
the LMCI group, while the efficiency of the DMN was signif-
icantly positively correlated with the MMSE scores of LMCI
patients, indicating their potential biomarkers for the prog-
ress in MCI stages and the importance of researches on the
subnetworks such as the DMN in the future.

For the interactions between the subnetworks, we found
that compared with the NC stage, the functional connectivity
between ATT and AUD and DMN and SUB was significantly
decreased in the EMCI, while the functional connectivity
between ATT and AUD and AUD and SEN was significantly
decreased in the AD stage. The DMN regions were reported
to be structurally connected [36] and related to the
memory-related cognitive deficits in MCI patients [37]. It
was also reported that the DMN exhibits functionally discon-
nected regions [38] and metabolic disruption [39] as well as

atrophy [40] and aberrant amyloid-β accumulation [41]. In
our edge-wise statistical analysis, we also found the alteration
of the functional connectivity mainly is involved with the
DMN and visual network during the whole disease progres-
sion. These results implied that the interactions between
subnetworks may reflect the mechanism of the brain network
topological structure changes during progression of diseases.
On the other hand, when we focus on the adjacent disease
stages, we found that the aberrant functional connectivity
almost involved all of the subnetworks except the SEM in
the EMCI, while only four edges showed significant changes
in the LMCI, which support the hypothesis that there are
already some alterations of the brain functional network
topological attributes in the EMCI stages as we mentioned
before. When compared with NC, almost all subnetworks
showed disrupted functional connectivity in the AD stage,
which was consistent with the previous studies [42, 43].
Meanwhile, as reported in other studies, some of the altered
edges (functional connectivity) were significantly correlated
with the MMSE, which suggested the key role it plays in the
different stages and helped us characterize the process of
the disease. In general, maybe the local-specific subnetworks
or edge-wise changes eventually lead to the interesting global
network ‘inversion’ change pattern.

There are several issues that need to be further
addressed. First, in this study, we used cross-sectional data
of each stage; some results maybe be more precise if only
longitudinal follow-up studies were performed in the future.
Second, accumulating evidence suggests the importance of
considering the structure and perfusion of the brain. Thus,
combining multimodal neuroimaging data will provide
more comprehensive insights into the progression of NC to
EMCI, LMCI, and AD. Third, there are still some issues
about the lack of efficient research methodologies on the
subnetwork, which may result in the insufficient analysis
result of the subnetwork in the worst cases. The mechanism
and foundation of the functional brain network are still
unclear, so that using density as a topological criterion for
functional brain network may not be appropriate. Moreover,
a data-driven topological filtering scheme for the brain
network analysis such as the OMST method [37, 44] should
be performed for the further studies.

5. Conclusion

In conclusion, the alteration of network attributes for the
whole and each subnetworks following the progression of
AD was explored by the graph theory. For the whole-brain
network analysis, the significant difference was found only
between the NC and patient groups, while between different
patient groups in AD progression, we discovered little signif-
icant difference. For the subnetwork analysis, two types of
distinct change patterns, named ‘temperature inversion’
and “monotonous decline,”were observed.We supposed that
the work mechanisms of subnetworks with same evolving
pattern may have something the same in nature. And the
attributes of each subnetwork (the intra- and intersubnet-
work functional connectivity) for each disease stage have
varying degrees of dynamical changing, mainly involving
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DMN and visual networks. These results may shed lights on
the pathophysiological mechanism of AD progression.
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